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Abstract
The second harmonic generation of antiferromagnetic and dielectric multilayers
is analysed by using a conventional nonlinear optics approach and transfer
matrix formalism. The theoretical modelling of the multilayers is configured in
Voigt geometry in order to observe second harmonic transmission and reflection
through the film system, with the assumption of weak nonlinearity and no
depletion of incident waves. With these, some of the linear and second harmonic
transmissions and reflections are calculated numerically and shown graphically.

1. Introduction

Since the linear electromagnetic propagation and dielectric function of semiconductor and
dielectric superlattices have been studied extensively and well understood [1–3], attention has
been devoted to the study of linear effects of superlattices of other physical systems, such as
magnetic/nonmagnetic superlattices [4–8]. These studies have been extended to the nonlinear
regime, as shown in [9–12]. In order to study nonlinear effects in superlattices, two approaches
have been used to simplify the complications due to the coupling of multilayer structures with
nonlinearities. One of these is the effective medium approach for the analysis of dispersion
properties of antiferromagnetic/nonmagnetic superlattices [12]. The other approach is the
combination of Green-function analysis and transfer matrix technique for the optical harmonic
generation of III–V compound GaP/AlP superlattices [10]. There are other approaches
being used in studying the vast number of nonlinear phenomena in magnetic/nonmagnetic
superlattices, for example the gap solitons [9], and electric polarization based magnetization
induced second harmonic generation [11].

In this paper, the study is focused on the generation of second harmonic waves
from antiferromagnetic/dielectric multilayers induced by incident intense far infrared
electromagnetic field. This is an extension of the previous calculation on the generation of
second harmonic waves from a simple uniaxial two-sublattice antiferromagnetic film (FeF2)
with weak nonlinearity [13, 14], within the conventional methods of nonlinear optics [15, 16].
In this paper, the approach being used in the analysis of linear and second harmonic
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Figure 1. Schematic diagram for complex amplitudes of the magnetic field of the linear waves in
the entire antiferromagnetic/dielectric multilayers.

transmission and reflection of antiferromagnetic/dielectric (FeF2/ZnF2) multilayers is entirely
based on conventional nonlinear optics and the transfer matrix technique [1, 14]. The difference
from the method adopted by Hashizume et al [10] is the assumption of weak nonlinearity
with no depleted input waves; therefore, the Green-function analysis can be neglected and the
calculation is simpler.

The paper is structured as follows. The theoretical modelling is shown in section 2, where
four main derivations are given: transfer matrix formalism of linear waves in the multilayers,
calculation of linear transmission and reflection coefficients through the multilayers, transfer
matrix formalism of second harmonic waves in the multilayers, and calculation of second
harmonic transmission and reflection through the multilayers. In section 3 the theoretical
results, together with their implications, are presented graphically. Finally, conclusions are
drawn in section 4.

2. Theoretical modelling

The main idea of the theoretical model is an extension of the previous calculations, where
the propagation of linear and second harmonic waves in an FeF2 film in Voigt geometry is
calculated based on Maxwell’s equations and conventional nonlinear optics approach with the
assumption of weak nonlinearity and no depleted input waves [14]. Within this approach, the
idea is extended to FeF2/dielectric multilayers by using the transfer matrix technique [1]. The
mathematical derivations are shown in the following subsections.

2.1. Transfer matrix formalism of linear waves in antiferromagnet/dielectric multilayers

The multilayers will be considered to be composed of antiferromagnetic (FeF2) and
dielectric (ZnF2) slabs with thicknesses such that their macroscopic descriptions based on
the corresponding magnetic susceptibilities and dielectric functions are perfectly adequate. A
schematic diagram of the multilayer structure is shown in figure 1 to guide the derivations of
the transfer matrix of the adjacent unit cells. The ZnF2 and FeF2 slabs are labelled as medium 1
and medium 2 respectively, with the corresponding thicknesses l1 and l2. As in the previous
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calculations [14], the multilayers are configured in Voigt geometry, where both the easy axis
of the antiferromagnetic slabs and the applied static magnetic field are in the direction of the
z-axis or parallel to the plane of the slabs.

In Voigt geometry, as shown in figure 1, the intense far infrared electromagnetic field
propagates along the y-axis and its magnetic component is along the x-axis. The linear wave
equations induced in the slabs are derived from the Maxwell’s equations and the appropriate
constitutive relations. In medium 1 or dielectric slabs, the spatial part of the wave equation is

∂2 Hx0(y)

∂y2
+ k2

1 Hx0(y) = 0 (1)

where k1 = ω(ε0ε1µ0)
1/2 is the magnitude of the propagation vector in medium 1, and ω is

the frequency of the incident waves. In medium 2 or FeF2 slabs, the spatial part of the wave
equation is

∂2 Hx0(y)

∂y2
+ k2

V Hx0(y) = 0 (2)

where kV = ω(ε0ε2µ0µV)1/2 is the magnitude of the propagation vector in medium 2, and

µV = µxx + (µx y)
2

µxx
is the Voigt permeability [13, 14]. Based on equation (1), the general

solutions for the linear magnetic and electric fields in medium 1 in the nth cell are

H n
1x(y, t) = 1

2

[
an

l exp[ik1(y − n�)] + bn
l exp[−ik1(y − n�)]] exp(−iωt) + c.c. (3)

or

H n
1x(y, t) = 1

2

[
an

r exp[ik1(y − n� − l1)] + bn
r exp[−ik1(y − n� − l1)]

]
exp(−iωt) + c.c.

(4)

and

En
1z(y, t) = 1

2

q1

ε0ω

[
an

l exp[ik1(y − n�)] − bn
l exp[−ik1(y − n�)]] exp(−iωt) + c.c. (5)

or

En
1z(y, t) = 1

2

q1

ε0ω

[
an

r exp[ik1(y − n� − l1)] − bn
r exp[−ik1(y − n� − l1)]

]

× exp(−iωt) + c.c. (6)

where q1 = k1/ε1 and an
l and bn

l are the complex amplitudes of the magnetic field travelling
in the positive and negative y-directions respectively. The subscripts l and r represent the
positions of the coefficients immediately to the left and to the right of an interface. Based on
equation (2), the general solutions for the linear magnetic and electric fields in medium 2 (FeF2)
in the nth cell are

H n
2x(y, t) = 1

2

[
un

l exp[ikV(y − n� − l1)] + vn
l exp[−ikV(y − n� − l1)]

]
exp(−iωt) + c.c.

(7)

or

H n
2x(y, t) = 1

2

[
un

r exp[ikV(y − (n + 1)�)] + vn
r exp[−ikV(y − (n + 1)�)]]

× exp(−iωt) + c.c. (8)

and

En
2z(y, t) = 1

2

qV

ε0ω

[
un

l exp[ikV(y − n� − l1)] − vn
l exp[−ikV(y − n� − l1)]

]

× exp(−iωt) + c.c. (9)
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or

En
2z(y, t) = 1

2

qV

ε0ω

[
un

r exp[ikV(y − (n + 1)�)] − vn
r exp[−ikV(y − (n + 1)�)]]

× exp[−iωt] + c.c. (10)

where qV = kV/ε2 and, un
l and vn

l are the complex amplitudes of the magnetic field travelling
in the positive and negative y-directions respectively. The complex amplitudes of magnetic
fields of the same medium can be related by appropriate phase factors, which can be rewritten
as matrices. In medium 1, these are

(
an

l
bn

l

)
= T1

(
an

r
bn

r

)
or

(
an

r
bn

r

)
= T2

(
an

l
bn

l

)
(11)

where

T1 =
(

exp(−ik1l1) 0
0 exp(ik1l1)

)
and

T2 = (T1)
−1 =

(
exp(ik1l1) 0

0 exp(−ik1l1)

)
. (12)

In medium 2, the complex amplitudes are related as
(

un
l

vn
l

)
= T3

(
un

r
vn

r

)
or

(
un

r
vn

r

)
= T4

(
un

l
vn

l

)
(13a)

where

T3 =
(

exp(−ikVl2) 0
0 exp(ikVl2)

)
and

T4 = (T3)
−1 =

(
exp(ikVl2) 0

0 exp(−ikVl2)

)
. (13b)

Based on equations (3)–(6) and (7)–(10), and applying the standard boundary conditions
for magnetic and electric fields on y = n� + l1 and y = (n + 1)� interfaces, we have four
boundary equations:

an
r + bn

r = un
l + vn

l (14a)

q1
(
an

r − bn
r

) = qV
(
un

l − vn
l

)
(14b)

un
r + vn

r = an+1
l + bn+1

l (14c)

qV
(
un

r − vn
r

) = q1
(
an+1

l − bn+1
l

)
. (14d)

From these boundary equations, the complex amplitudes across medium 1 and medium 2 are
related as (

un
l

vn
l

)
= T5

(
an

r
bn

r

)
or

(
an

r
bn

r

)
= T6

(
un

l
vn

l

)
(15a)

(
un

r
vn

r

)
= T5

(
an+1

l
bn+1

l

)
or

(
an+1

l
bn+1

l

)
= T6

(
un

r
vn

r

)
(15b)

where

T5 = 1

2

(
1 + q1

qV
1 − q1

qV

1 − q1

qV
1 + q1

qV

)
and T6 = (T5)

−1 = 1

2

(
1 + qV

q1
1 − qV

q1

1 − qV

q1
1 + qV

q1

)
. (15c)

From equations (15), the complex amplitudes in the adjacent unit cells are related as
(

an+1
l

bn+1
l

)
= Π

(
an

l
bn

l

)
(16a)
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where

Π = T6T4T5T2 (16b)

is the transfer matrix across one unit cell of the linear waves.

2.2. Calculation of linear transmission and reflection coefficients through
antiferromagnetic/dielectric multilayers

Based on the linear transfer matrix in equations (16a) and (16b), and the schematic
diagram in figure 1, the linear wave transmission and reflection coefficients of the entire
antiferromagnetic/dielectric multilayer are derived as follows. As in section 2.1, the linear wave
equations in the incident medium I and substrate medium 3 are derived from the Maxwell’s
equations and the appropriate constitutive relations. In medium I, the spatial part of the wave
equation is

∂2 Hx0(y)

∂y2
+ k2

I Hx0(y) = 0 (17)

where kI = ω
√

ε0µ0εI is the magnitude of the propagation vector in medium I, and εI is the
dielectric constants for medium I. In medium 3,

∂2 Hx0(y)

∂y2
+ k2

3 Hx0(y) = 0 (18)

k3 = ω
√

ε0µ0ε3 is the magnitude of the propagation vector in medium 3, and ε3 is the dielectric
constants for medium 3. Based on equations (17) and (18), the general solutions of linear
magnetic and electric fields in medium I and medium 3 are

HIx(y, t) = 1
2

[
p exp(ikI y) + r exp(−ikI y)

]
exp(−iωt) + c.c. (19)

EI z(y, t) = 1

2

qI

ε0ω

[
p exp(ikIy) − r exp(−ikIy)

]
exp(−iωt) + c.c. (20)

H3x(y, t) = 1
2 t exp[ik3(y − j� − l2)] exp(−iωt) + c.c. (21)

E3z(y, t) = 1

2

q3

ε0ω
t exp[ik3(y − j� − l2)] exp(−iωt) + c.c. (22)

where qI = kI/εI and q3 = k3/ε3.
Based on equation (2), the magnetic and electric fields of the left interface in medium 2 of

the zeroth cell are

H 0
2x(y, t) = 1

2

[
u0

l exp(ikVy) + v0
l exp(−ikVy)

]
exp(−iωt) + c.c. (23)

E0
2z(y, t) = 1

2

qV

ε0ω

[
u0

l exp(ikVy) − v0
l exp(−ikVy)

]
exp(−iωt) + c.c. (24)

and the magnetic and electric fields of the right interface in medium 2 of the j th cell are

H j
2x(y, t) = 1

2

[
u j

r exp[ikV(y − j� − l2)] + v j
r exp[−ikV(y − j� − l2)]

]

× exp(−iωt) + c.c. (25)

E j
2z(y, t) = 1

2

qV

ε0ω

[
u j

r exp[ikV(y − j� − l2)] − v j
r exp[−ikV(y − j� − l2)]

]

× exp(−iωt) + c.c. (26)

Applying boundary conditions at the y = 0 interface for the equation pairs (19) and (23),
(20) and (24), and at the y = j� + l2 interface for equation pairs (21) and (25), (22) and (26),
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we have four boundary equations, relating the outside complex amplitudes to the complex
amplitudes immediately inside the multilayer:

p + r = u0
l + v0

l (27a)

qI p − qIr = qVu0
l − qVv0

l (27b)

u j
r + v j

r = t (27c)

qVu j
r − qVv j

r = q3t . (27d)

Inside the multilayers, the complex amplitudes in medium 2 of the zeroth and j th unit cells
are related by using the linear transfer matrix equations (16a) and (16b). The result is

(
u j

r

v
j
r

)
= Θ

(
u0

l
v0

l

)
or

u j
r = �11u0

l + �12v
0
l

v
j
r = �21u0

l + �22v
0
l

(28a)

where

Θ = T4T5T2 (Π) j−1 T6T4. (28b)

Substituting equation (28a) into the four boundary equations (27c)–(27d), the solutions of
the linear transmission and reflection coefficients are obtained:

r = u0
l + v0

l − p (29a)

t = (�11 + �21) u0
l + (�12 + �22) v0

l (29b)

where

u0
l = 2qI p {qV (�12 − �22) − q3 (�12 + �22)}

(qI + qV) {qV (�12 − �22) − q3 (�12 + �22)} − (qI − qV) {qV (�11 − �21) − q3 (�11 + �21)}
(29c)

v0
l = −2qI p {qV (�11 − �21) − q3 (�11 + �21)}

(qI + qV) {qV (�12 − �22) − q3 (�12 + �22)} − (qI − qV) {qV (�11 − �21) − q3 (�11 + �21)} .

(29d)

Calculations of Poynting’s vector in medium I and medium 3 show that the linear
transmission (≡T ) and reflection coefficients (≡R) through the entire multilayers are

T = εI

ε3

|t|2

|p|2 and R = |r |2
|p|2 (30)

where p is the amplitude of input waves, and |p|2 is directly proportional to the input power Ip

as

Ip = 1

2

kI

ε0εIω
|p|2 . (31)

2.3. Transfer matrix formalism of second harmonic waves in antiferromagnetic/dielectric
multilayers

The transfer matrix formalism of the second harmonic waves across the slabs is similar to the
linear waves. Compared to the linear wave equation, the basic difference is due to an additional
source term. The source is in terms of the linear complex amplitudes. The solution of these
inhomogeneous second order differential equations carry the source in their particular solutions,
and result in the fields in antiferromagnetic slabs. To assist the derivation, a schematic diagram
for complex amplitudes of the magnetic field of the linear and second harmonic waves in the
entire antiferromagnetic/dielectric multilayers is sketched in figure 2.

In Voigt geometry, for an incident dynamic wave with its magnetic component along the
x-axis, the induced second harmonic waves in medium 2 have magnetic component along the
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Figure 2. Schematic diagram for complex amplitudes of the magnetic field of the linear (thin
arrows) and second harmonic (thick arrows) waves in the entire antiferromagnetic/dielectric
multilayers

z-axis, due to nonzero susceptibility tensor elements χzxx and χzyy [13, 14]. The spatial part of
the second harmonic wave equations induced in medium 1 is

∂2 Hz0(y)

∂y2
+ α2

1 Hz0(y) = 0 (32)

where α2
1 = �2ε0ε1µ0, and ε1 is evaluated at second harmonic frequency, � = 2ω, but usually

ε1 (dielectric) is considered frequency independent. In medium 2,

∂2 Hz0(y)

∂y2
+ α2

2 Hz0(y) = 	Hx0(y)Hx0(y) (33)

where α2
2 = �2ε0ε2µ0, and 	 = − 1

2χzxx [1 + (
µx y

µxx
)2] as in [14], is the source of the second

harmonic waves. ε2 is evaluated at �, but 	 is evaluated at ω. By using equation (32), the
general solutions of the magnetic and electric fields in medium 1 of the nth cell are

H n
1z = 1

2

[
An

l exp[iα1(y − n�)] + Bn
l exp[−iα1(y − n�)]] exp(−i�t) + c.c. (34)

or

H n
1z = 1

2

[
An

r exp[iα1(y − n� − l1)] + Bn
r exp[−iα1(y − n� − l1)]

]
exp(−i�t) + c.c. (35)

and

En
1x = 1

2

Q1

ε0�

[−An
l exp[iα1(y − n�)] + Bn

l exp[−iα1(y − n�)]] exp(−i�t) + c.c. (36)

or

En
1x = 1

2

Q1

ε0�

[−An
r exp[iα1(y − n� − l1)] + Bn

r exp[−iα1(y − n� − l1)]
]

× exp(−i�t) + c.c. (37)
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where Q1 = α1/ε1. By using equation (33), the magnetic and electric fields in medium 2
(magnetic medium) of the nth cell are

H n
2z = 1

2

[
U n

l exp[iα2(y − n� − l1)] + V n
l exp[−iα2(y − n� − l1)]

+ f n
1l exp[iξ(y − n� − l1)] + f n

2l exp[−iξ(y − n� − l1)] + f n
3l

]

× exp(−i�t) + c.c. (38)

or

H n
2z = 1

2

[
U n

r exp
{
iα2

[
y − (n + 1)�

]} + V n
r exp

{−iα2
[
y − (n + 1)�

]}

+ f n
1r exp

{
iξ

[
y − (n + 1)�

]} + f n
2r exp

{−iξ
[
y − (n + 1)�

]} + f n
3r

]

× exp(−i�t) + c.c. (39)

and

En
2x = 1

2

Q2

ε0�

[−U n
l exp[iα2(y − n� − l1)] + V n

l exp[−iα2(y − n� − l1)]
]

exp(−i�t)

+ 1

2

QV

ε0�

[− f n
1l exp[iξ(y − n� − l1)] + f n

2l exp[−iξ(y − n� − l1)]
]

× exp(−i�t) + c.c. (40)

or

En
2x = 1

2

Q2

ε0�

[−U n
r exp {iα2[y − (n + 1)�]} + V n

r exp {−iα2[y − (n + 1)�]}] exp(−i�t)

+ 1

2

QV

ε0�

[− f n
1r exp

{
iξ

[
y − (n + 1)�

]} + f n
2r exp

{−iξ
[
y − (n + 1)�

]}]

× exp(−i�t) + c.c. (41)

where Q2 = α2/ε2, ξ = 2kV, QV = ξ/ε2, and kV is evaluated at ω. The sources in
equations (38)–(41) are in terms of linear amplitudes. These are shown in equations (42a)–
(42 f ):

f n
1l = (

un
l

)2
	/

(
α2

2 − ξ 2
)

(42a)

f n
2l = (

vn
l

)2
	/

(
α2

2 − ξ 2
)

(42b)

f n
3l = 2un

l v
n
l 	/α2

2 (42c)

and

f n
1r = (

un
r

)2 = ei2kVl2
(
un

l

)2
	/

(
α2

2 − ξ 2
)

(42d)

f n
2r = (

vn
r

)2 = e−i2kVl2
(
vn

l

)2
	/

(
α2

2 − ξ 2
)

(42e)

f n
3r = 2un

r v
n
r = 2un

l v
n
l 	/α2

2 . (42 f )

The second harmonic magnetic and electric fields of the same medium can be related by
an appropriate phase factor. For medium 1, from equations (34) to (37), these are

(
An

l
Bn

l

)
= �1

(
An

r
Bn

r

)
or

(
An

r
Bn

r

)
= �2

(
An

l
Bn

l

)
(43a)

where

�1 =
(

exp(−iα1l1) 0
0 exp(iα1l1)

)
and

�2 = (�1)
−1 =

(
exp(iα1l1) 0

0 exp(−iα1l1)

)
. (43b)
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For medium 2, from equations (38) to (41), these are
(

U n
l

V n
l

)
= �3

(
U n

r
V n

r

)
or

(
U n

r
V n

r

)
= �4

(
U n

l
V n

l

)
(44a)

where

�3 =
(

exp(−iα2l2) 0
0 exp(iα2l2)

)
and

�4 = (�3)
−1 =

(
exp(iα2l2) 0

0 exp(−iα2l2)

)
. (44b)

Applying standard boundary conditions for the magnetic and electric fields at the y =
n�+l1 and y = (n+1)� interfaces by referring to equations (34)–(41), we have four boundary
equations for second harmonic complex amplitudes

An
r + Bn

r = U n
l + V n

l + φn
hl (45a)

Q1
(−An

r + Bn
r

) = Q2
(−U n

l + V n
l

) + φn
el (45b)

U n
r + V n

r + φn
hr = An+1

l + Bn+1
l (45c)

Q2
(−U n

r + V n
r

) + φn
er = Q1

(−An+1
l + Bn+1

l

)
(45d)

where

φn
hl = f n

1l + f n
2l + f n

3l, φn
el = QV

(− f n
1l + f n

2l

)
(45e)

and

φn
hr = f n

1r + f n
2r + f n

3r , φn
er = QV

(− f n
1r + f n

2r

)
. (45 f )

The solutions of these boundary equations are
(

An
r

Bn
r

)
= �7

(
U n

l
V n

l

)
+ �n

8 or

(
U n

l
V n

l

)
= �9

(
An

r
Bn

r

)
+ �n

10 (46)

and
(

An+1
l

Bn+1
l

)
= �11

(
U n

r
V n

r

)
+ �n

12 or

(
U n

r
V n

r

)
= �13

(
An+1

l
Bn+1

l

)
+ �n

14 (47)

where

�7 =
( 1

2 (1 + Q2
Q1

) 1
2 (1 − Q2

Q1
)

1
2 (1 − Q2

Q1
) 1

2 (1 + Q2
Q1

)

)
, �n

8 =
( 1

2 (φn
hl − 1

Q1
φn

el)

1
2 (φn

hl + 1
Q1

φn
el)

)
(48)

�9 =
( 1

2 (1 + Q1
Q2

) 1
2 (1 − Q1

Q2
)

1
2 (1 − Q1

Q2
) 1

2 (1 + Q1
Q2

)

)
, �n

10 =
( 1

2 ( 1
Q2

φn
el − φn

hl)

− 1
2 (

1
Q2

φn
el + φn

hl)

)
(49)

�11 = �7 =
( 1

2 (1 + Q2
Q1

) 1
2 (1 − Q2

Q1
)

1
2 (1 − Q2

Q1
) 1

2 (1 + Q2
Q1

)

)
, �n

12 =
( 1

2 (φn
hr − 1

Q1
φn

er )

1
2 (φn

hr + 1
Q1

φn
er )

)
(50)

�13 = �9 =
( 1

2 (1 + Q1
Q2

) 1
2 (1 − Q1

Q2
)

1
2 (1 − Q1

Q2
) 1

2 (1 + Q1

Q2
)

)
, �n

14 =
( 1

2 ( 1
Q2

φn
er − φn

hr )

− 1
2 (

1
Q2

φn
er + φn

hr )

)
. (51)

Based on equations (46) and (47), the transfer matrix relates the second harmonic waves in

adjacent unit cells as
(

An+1
l

Bn+1
l

)
= 

(
An

l
Bn

l

)
+ ϒn (52a)
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where

 = �11�4�9�2, ϒn = �11�4�
n
10 + �n

12. (52b)

From equations (52a) and (52b), the second harmonic waves in the first cell and the nth
cell are related as follows:

(
An

l
Bn

l

)
= ()n−1

(
A1

l
B1

l

)
+

n−1∑

r=1

()n−1−rϒr . (53)

2.4. Calculation of second harmonic transmission and reflection through
antiferromagnetic/dielectric multilayers

The second harmonic transmission and reflection coefficients are derived based on the
schematic diagram in figure 2 and the second harmonic transfer matrix shown in
equations (52a)–(53). The methodology is the same as the calculation for the linear waves.
The spatial part of the second harmonic wave equations induced in medium I is

∂2 Hz0(y)

∂y2
+ α2

I Hz0(y) = 0 (54)

where α2
I = �2ε0εIµ0. In medium 3 this is

∂2 Hz0(y)

∂y2
+ α2

3 Hz0(y) = 0 (55)

where α2
3 = �2ε0ε3µ0. The general solutions of equations (54) and (55) give the second

harmonic magnetic and electric fields in medium I and medium 3, respectively. These are

HI z = 1
2ρ exp(−iαI y) exp(−i�t) + c.c. (56)

EIx = 1

2

QI

ε0�
ρ exp(−iαI y) exp(−i�t) + c.c. (57)

in medium I, where QI = αI/εI, and

H3z = 1
2τ exp[iα3(y − j� − l2)] exp(−i�t) + c.c. (58)

E3x = −1

2

Q3

ε0�
τ exp[iα3(y − j� − l2)] exp(−i�t) + c.c. (59)

in medium 3, where Q3 = α3/ε3, εI and ε3 are evaluated at � = 2ω. However, they are
considered as constants, as in the previous section.

By using equation (33), the second harmonic magnetic and electric fields of the left
interface in medium 2 of the zeroth cell are

H 0
2z = 1

2

[
U 0

l exp(iα2 y) + V 0
l exp(−iα2 y) + f 0

1l exp(iξy) + f 0
2l exp(−iξy) + f 0

3l

]

× exp(−i�t) + c.c. (60)

E0
2x = 1

2

Q2

ε0�

[−U 0
l exp(iα2 y) + V 0

l exp(−iα2y)
]

exp(−i�t)

+ 1

2

QV

ε0�

[− f 0
1l exp(iξy) + f 0

2l exp(−iξy)
]

exp(−i�t) + c.c. (61)

and the second harmonic magnetic and electric fields of the right interface in medium 2 of the
j th cell are
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H j
2z = 1

2

[
U j

r exp[iα2(y − j� − l2)] + V j
r exp[−iα2(y − j� − l2)]

+ f j
1r exp[iξ(y − j� − l2)] + f j

2r exp[−iξ(y − j� − l2)] + f j
3r

]

× exp(−i�t) + c.c. (62)

E j
2x = 1

2

Q2

ε0�

[−U j
r exp[iα2(y − j� − l2)] + V j

r exp[−iα2(y − j� − l2)]
]

exp(−i�t)

+ 1

2

QV

ε0�

[
− f j

1r exp[iξ(y − j� − l2)] + f j
2r exp[−iξ(y − j� − l2)]

]

× exp(−i�t) + c.c. (63)

Applying boundary conditions at the y = 0 interface for the equation pairs (56), (60) and
(57), (61), and at the y = j�+ l2 interface for the equation pairs (58), (62) and (59), (63), four
boundary equations for second harmonic waves are obtained:

ρ = U 0
l + V 0

l + φ0
hl (64a)

QIρ = Q2
(−U 0

l + V 0
l

) + φ0
el (64b)

U j
r + V j

r + φ
j
hr = τ (64c)

Q2
(−U j

r + V j
r

) + φ j
er = −Q3τ (64d)

where

φ0
hl = f 0

1l + f 0
2l + f 0

3l (65a)

φ0
el = QV

(− f 0
1l + f 0

2l

)
(65b)

φ
j
hr = f j

1r + f j
2r + f j

3r (65c)

φ j
er = QV

(
− f j

1r + f j
2r

)
. (65d)

From the second harmonic transfer matrix equations (52a)–(53), the complex amplitudes
across j unit cells are related as

(
U j

r

V j
r

)
= F

(
U 0

l
V 0

l

)
+ G (66a)

where

F = �4�9�2 () j−1 �11�4 (66b)

G = �4�9�2 () j−1 �0
12 + �4�9�2

j−1∑

r=1

() j−1−r ϒr + �4�
j
10. (66c)

Expanding (66a), we obtain

U j
r = F11U 0

l + F12V 0
l + G11 (67a)

V j
r = F21U 0

l + F22V 0
l + G21. (67b)

The substitution of equations (67a) and (67b) into the boundary equations (64a)–(64d)
gives the second harmonic reflection and transmission coefficients ρ and τ as

ρ = U 0
l + V 0

l + φ0
hl (68)

τ = (F11 + F21)U 0
l + (F12 + F22) V 0

l + G11 + G21 + φ
j
hr (69)

where

U 0
l = O22C11 − O12C21

O11 O22 − O12 O21
(70)

V 0
l = −O21C11 + O11C21

O11 O22 − O12 O21
(71)
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and

O11 = (QI + Q2) (72a)

O12 = (QI − Q2) (72b)

O21 = Q2 (F21 − F11) + Q3 (F11 + F21) (72c)

O22 = Q2 (F22 − F12) + Q3 (F12 + F22) (72d)

C11 = φ0
el − QIφ

0
hl (72e)

C21 = −Q2 (G21 − G11) − φ j
er − Q3

(
G11 + G21 + φ

j
hr

)
. (72 f )

Calculations of Poynting’s vector in medium I and medium 3 show that the second
harmonic transmission and reflection coefficients through the entire multilayers are

TSHG = ε1

ε3

|τ |2
|p|2 and RSHG = |ρ|2

|p|2 (73)

where εI and ε3 are the dielectric constants for medium I and medium 3 that sandwich the
multilayer.

3. Results and discussion

The calculated results of equations (30) for linear transmission and reflection coefficients, and
equations (73) for second harmonic transmission and reflection coefficients, have been applied
by using the macroscopic parameters of FeF2 for the antiferromagnetic slabs and ZnF2 for the
dielectric slabs. FeF2 is a uniaxial two-sublattice antiferromagnet with a dielectric constant
ε2 = 5.5, a gyromagnetic ratio γ /µ0 = 1.05 cm−1 T−1, an exchange field µ0 HE = 53.3 T, an
anisotropy field µ0 HA = 19.7 T, a sublattice magnetization µ0M0 = 0.056 T and an applied
static magnetic field in the direction of the z-axis µ0 H0, whereas ZnF2 is assumed to be a
simple dielectric with a dielectric constant ε1 = 8.0.

In the calculations, the chosen multilayers consist of 7 and 12 complete unit cells. As a
whole, there are 8 FeF2 slabs and 7 ZnF2 slabs in the multilayer with 7 complete unit cells,
and 13 FeF2 slabs and 12 ZnF2 slabs in the multilayer with 12 complete unit cells. The chosen
damping parameter is η = 5 × 10−4 [14], and the applied static field is µ0 H0 = 3 T parallel
to the slabs. With these damping parameters and applied static field, the second harmonic
susceptibility elements are significant in the vicinities and at the antiferromagnetic resonances,
49.3 and 55.6 cm−1 [13, 14], where the linear absorption is significant. This is the range where
the second harmonic waves are expected. Away from these resonances, the second harmonic
susceptibility elements are effectively zero. Since the calculation involves the second harmonic
effect in multilayers, the numerical errors have to be taken care of in the numerical evaluation of
equations (30) and (73). This is done by checking the energy conservation, or the total energies
of linear and second harmonic transmissions, and reflections should be less than or equal to
the incident energy, Ip. In the region far away from the antiferromagnetic resonance, any
peaks in the calculated spectra, whether the energy is conserved or not, should be considered
as a numerical error because the second harmonic susceptibility elements are zero. If the
experimentalists observe any second harmonic signal far away from the antiferromagnetic
resonance, these must be due to some other effects where further theory is required to explain
their appearance.

The linear transmission and reflection coefficients are plotted versus a wide range of
frequency sweep in order to exhibit the features of the multilayer film. The thicknesses of
ZnF2 and FeF2 slabs are fixed as l1 = 20 µm and l2 = 40 µm respectively. With all these
parameters, the calculated linear reflection and transmission coefficients are shown in figure 3,
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Figure 3. Linear reflection and transmission of FeF2/ZnF2 multilayers versus frequency sweep with
thicknesses for ZnF2 slabs, l1 = 20 µm, and FeF2 slabs, l2 = 40 µm, in 3 T applied magnetic field:
(a) linear reflection for j = 7; (b) linear transmission for j = 7; (c) linear reflection for j = 12;
(d) linear transmission for j = 12.

and the corresponding second harmonic reflection and transmission coefficients are shown in
figure 4 versus frequency sweep. The input intensity to produce the results in figures 3 and 4 is
Ip = 1.6 × 1015 W m−2 [14].

From figures 3(a) to (d), the linear reflection and transmission curves show clearly the
typical stop bands of superlattice structures, with reflection close to unity and transmission
close to zero [5, 6]. The location and the width of the stop bands are due to the periodic
structure of the multilayers, which introduces the gaps in the energy bands depending on the
wavevector, kV, k1 and the thicknesses of the slabs, l1 and l2 [1, 5, 6]. This feature is more
obvious in figures 3(c) and (d) with more complete unit cells. The antiferromagnetic resonance
dips expected at 49.3 and 55.6 cm−1 for 3 T of applied static field [14] intervene with the
fringes of spatial resonances and the stop band. The dips at the resonances for both transmission
and reflection curves are due to the strong antiferromagnetic absorption in the vicinity and at
the antiferromagnetic resonance frequencies, whereas the fringes outside the stop bands and
away from antiferromagnetic resonances are due to the dimensional resonance in the periodic
structure depending on the wavevector, kV, k1 and the thicknesses of the slabs, l1 and l2.

The second harmonic reflection and transmission are about three orders weaker than the
linear transmission and reflection, and are significant in the vicinity and at the antiferromagnetic
resonances. These are shown in figures 4(a)–(d). From the curves shown in figures 4,
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Figure 4. Second harmonic (SH) reflection and transmission of FeF2/ZnF2 multilayers versus
frequency sweep with thicknesses for ZnF2 slabs, l1 = 20 µm, and FeF2 slabs, l2 = 40 µm in
3 T applied magnetic field: (a) SH reflection for j = 7; (b) SH transmission for j = 7; (c) SH
reflection for j = 12; (d) SH transmission for j = 12.

it is obvious that the main second harmonic transmission and reflection peaks at the
antiferromagnetic resonances are sharpened by the multilayer structure as compared with the
previous calculation for a single FeF2 film [14]. The present result also shows that the minor
fringes away antiferromagnetic resonances of a single FeF2 film are drastically reduced when
FeF2 is structured in a multilayer with an interleaving dielectric, in comparison to what has
been calculated for an isolated FeF2 slab [14]. The other important feature is the multilayer
structure enhances the phase difference between the generated second harmonic transmission
and reflection waves. This is obvious if we compare the shapes of the spectra in figures 4(a)
and (b) for 7 complete unit cells, and figures 4(c) and (d) for 12 complete unit cells. Moreover,
for all spectra shown in figure 4, the magnitudes and patterns of the peaks are different at the
two antiferromagnetic resonances. This feature differs from the previous results for a single
FeF2 film [14], where the magnitudes and patterns of the peaks are almost the same at the two
antiferromagnetic resonances.

4. Conclusion

The main result of this paper is the calculation and formulation of the second harmonic waves
generated through an antiferromagnetic/dielectric multilayer based entirely on the transfer
matrix formalism and the nonlinear magnetic response of an antiferromagnet. The calculations
are a combination of transfer matrix technique and conventional nonlinear optics approach
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with the assumption of no depletion of the input waves and without the assumption of slowly
varying enveloped approximation, where about 0.1% of the input intensity is converted to
second harmonic waves at the antiferromagnetic resonances. The calculated spectra show
several distinctive features as compared to the previous results of a single FeF2 film [14].
Namely, the presence of stop bands in the linear spectra, the sharpened main peaks of second
harmonic spectra at antiferromagnetic resonances, and the fact that minor peaks away from
resonances are almost disappeared, and the obvious phase difference between transmission
and reflection spectra, and between the main peaks at two antiferromagnetic resonances in
all spectra. The methodology shown in this paper is a preliminary study on the nonlinear
waves in antiferromagnetic/dielectric multilayers, and will facilitate the future studies on more
general cases, such as second harmonic generation with depletion of the input waves for
ferromagnetic/dielectric systems where the assumption of weak nonlinearity cannot be used.
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